Technically, industrial water softener can remove dissolved ferrous iron by ion exchange, just as they remove calcium and magnesium. Further, precipitated iron can be removed by filtration. Problems arise, however, in getting the iron out of the softener bed during regeneration. Precipitated iron (ferric hydroxide), formed when soluble ferrous iron is oxidized by oxygen in the air, is a gelatinous, sticky material that tends to adhere to the beads or particles in a softener bed
Ideally, ferrous iron removed by ion exchange should be discharged with the hardness during the usual brine regeneration. In practice, however, it is usual for at least some of this iron to be converted to the ferric, insoluble state by oxygen in the regeneration water or brine.
Many factors affect the ability of softeners to remove iron successfully; the form of iron and its concentration, softener design, the presence or absence of organic matter and dissolved oxygen, cleaning procedures, regeneration frequency, pH, temperature, and usage characteristics.
Ideally, ferrous iron removed by ion exchange should be discharged with the hardness during the usual brine regeneration. In practice, however, it is usual for at least some of this iron to be converted to the ferric, insoluble state by oxygen in the regeneration water or brine.
Many factors affect the ability of softeners to remove iron successfully; the form of iron and its concentration, softener design, the presence or absence of organic matter and dissolved oxygen, cleaning procedures, regeneration frequency, pH, temperature, and usage characteristics.